Beaufort Sea ice, April 2007. Photo courtesy of Andrew Roberts, Los Alamos National Laboratory.

Los Alamos and Oak Ridge scientists lead a DOE supercomputing effort to model the complex interactions affecting climate change in Arctic coastal regions.

Earth’s rapidly changing Arctic coastal regions have an outsized climatic effect that echoes around the globe. Tracking processes behind this evolution is a daunting task even for the best scientists.

Coastlines are some of the planet’s most dynamic areas – places where marine, terrestrial, atmospheric and human actions meet. But the Arctic coastal regions face the most troubling issues from human-caused climate change from increasing greenhouse gas emissions, says Los Alamos National Laboratory (LANL) scientist Andrew Roberts.

“Arctic coastal systems are very fragile,” says Roberts, who leads the high-performance computing systems element of a broader Department of Energy (DOE) Office of Science effort, led by its Biological and Environmental Research (BER) office, to simulate changing Arctic coastal conditions. “Until the last several decades, thick, perennial Arctic sea ice appears to have been generally stable. Now, warming temperatures are causing it to melt.”

In the 1980s, multiyear ice at least four years old accounted for more than 30 percent of Arctic coverage; that has shrunk to not much more than 1 percent today. Whereas that perennial pack ice circulates around the Arctic, another type known as land-fast ice – anchored to a shoreline or the ocean bottom, acting as a floating land extension – is receding toward the coast due to rising temperatures.

This exposes coastal regions to damaging waves that can disperse ice and erode coastal permafrost, Roberts says.

Read full article at https://ascr-discovery.org/2021/09/tracking-the-big-melt/

Leave a Reply